A study on riverine organisms in Wanang III River

Presentation by:
Danny Wolfried
Jiri Richta
Mazzella Maniwavie
Outline

• Introduction
• Research question?
• Methodology
• Results
• Summary
• Acknowledgements
Introduction

- Riverine communities are made up of vertebrates, invertebrates, plants and their micro-habitats.
- Community composition: includes groups
 - Fish
 - Amphibians
 - Reptiles
 - Crustaceans
 - Insects
 - Molluscs
 - Plants
Research question

Is there a difference in Species diversity of macro-invertebrates and vertebrates among different habitats in Wanang III river?
Methodology

Study Area

• Wanang river, located western slope of the Swire Station
• Vegetation: tall grass and overhanging trees

• Method- Kick sampling (kick net mesh = 1mm)
• Sampling along river bends in shallow mud, sand and gravel micro-habitats

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Particle size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mud + organic matter</td>
<td><0.5mm</td>
</tr>
<tr>
<td>Sand</td>
<td>>0.5<1.0mm</td>
</tr>
<tr>
<td>Gravel</td>
<td>>1.0mm</td>
</tr>
</tbody>
</table>
Digitam creek
Wanang III river
Helipad
Swire station

50 hectare plot
Sampling design

Sites

Habitats
Results

Univariate Tests of Significance for number of species (Spreadsheet1)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: 1.527525

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Fixed</td>
<td>3619.267</td>
<td>1</td>
<td>3619.267</td>
<td>5.00000</td>
<td>12.46667</td>
<td>290.3155</td>
<td>0.000013</td>
</tr>
<tr>
<td>site</td>
<td>Random</td>
<td>62.333</td>
<td>5</td>
<td>12.467</td>
<td>10.25032</td>
<td>7.51733</td>
<td>1.6584</td>
<td>0.229949</td>
</tr>
<tr>
<td>habitat</td>
<td>Fixed</td>
<td>597.667</td>
<td>2</td>
<td>298.833</td>
<td>10.00000</td>
<td>7.73333</td>
<td>38.6422</td>
<td>0.000020</td>
</tr>
<tr>
<td>site*habitat</td>
<td>Random</td>
<td>77.333</td>
<td>10</td>
<td>7.733</td>
<td>6.00000</td>
<td>2.33333</td>
<td>3.3143</td>
<td>0.077873</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>14.000</td>
<td>6</td>
<td>2.333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
habitat; LS Means
Current effect: F(2, 10) = 38.642, p = .00002
Type III decomposition
Vertical bars denote 0.95 confidence intervals
Results

Univariate Tests of Significance for total.indi (Spreadsheet1)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: 8.077747

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Fixed</td>
<td>73850.42</td>
<td>1</td>
<td>73850.42</td>
<td>5.00000</td>
<td>712.297</td>
<td>103.6793</td>
<td>0.000157</td>
</tr>
<tr>
<td>site</td>
<td>Random</td>
<td>3561.48</td>
<td>5</td>
<td>712.30</td>
<td>10.05285</td>
<td>989.498</td>
<td>0.7199</td>
<td>0.623287</td>
</tr>
<tr>
<td>habitat</td>
<td>Fixed</td>
<td>24714.92</td>
<td>2</td>
<td>12357.46</td>
<td>10.00000</td>
<td>1028.008</td>
<td>12.0208</td>
<td>0.002188</td>
</tr>
<tr>
<td>site*habitat</td>
<td>Random</td>
<td>10280.08</td>
<td>10</td>
<td>1028.01</td>
<td>6.00000</td>
<td>65.250</td>
<td>15.7549</td>
<td>0.001546</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>391.50</td>
<td>6</td>
<td>65.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
habitat; LS Means
Current effect: F(2, 10)=12.021, p=.00219
Type III decomposition
Vertical bars denote 0.95 confidence intervals
Results

Univariate Tests of Significance for index of div. (Spreadsheet1)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: .1160674

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Fixed</td>
<td>0.768148</td>
<td>1</td>
<td>0.768148</td>
<td>5.000000</td>
<td>0.004421</td>
<td>173.7303</td>
<td>0.000045</td>
</tr>
<tr>
<td>site</td>
<td>Random</td>
<td>0.022107</td>
<td>5</td>
<td>0.004421</td>
<td>13.51792</td>
<td>0.003216</td>
<td>1.3748</td>
<td>0.293856</td>
</tr>
<tr>
<td>habitat</td>
<td>Fixed</td>
<td>0.064085</td>
<td>2</td>
<td>0.032043</td>
<td>10.000000</td>
<td>0.002789</td>
<td>11.4896</td>
<td>0.002563</td>
</tr>
<tr>
<td>site*habitat</td>
<td>Random</td>
<td>0.027888</td>
<td>10</td>
<td>0.002789</td>
<td>6.000000</td>
<td>0.013472</td>
<td>0.2070</td>
<td>0.985552</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>0.080830</td>
<td>6</td>
<td>0.013472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
habitat; LS Means

Current effect: $F(2, 10) = 11.490, p = .00256$

Type III decomposition

Vertical bars denote 0.95 confidence intervals
Variability among sites and habitats
Preference of families

TipM.S 3
NauM.S 3
TipM.S 2
NauM.S 2
TipM.S 1
NauM.S 1
Tadpole

Gravel
Sand
Mud
GobGloss
Elm
Ath
LepM.S 2
UniM.S 1
Gom
Bit
EleM.S 1
Apo
MelGloss
Pyr
Mud

- Others: 1%
- Hemiptera: 16%
- Epiproctopora (Anisoptera): 12%
- Decapoda: 20%
- Perciformes: 12%
- Diptera: 6%
- Zygoptera: 10%
- Ephemenoptera: 3%
- Coleoptera: 2%
- Gastropoda: 2%
- Trichoptera: 16%

n = 532
Others 1%

Sand

Hemiptera 14%

Perciformes 12%

Decapoda 8%

Gastropoda 6%

Trichoptera 17%

Epiproctopora (Anisoptera) 28%

Diptera 12%

Ephemeroptera 1%

Coleoptera 1%

Zygoptera 0%

n = 199
Gravel

- Hemiptera: 53%
- Decapoda: 17%
- Trichoptera: 8%
- Diptera: 6%
- Ephemeridae: 5%
- Coleoptera: 0%
- Epiproctopora (Anisoptera): 6%
- Perciformes: 2%
- Others: 1%
- Gastropoda: 1%
- Zygoptera: 1%

n = 421
Summary

• Significant difference among mud, sand and gravel habitats in
 – Number of species (mud = largest, sand=least)
 – Total number of individuals (mud = largest, sand=least)
 – Simpsons Index of diversity : large species diversity in mud compared to sand and gravel.
 – The largest variability was between gravel and sand
Acknowledgements

- Binatang Research Center
- Jan Leps and Vojtech Novotny
- Bonnie and Absolom
- Participants

References:
EM TASOL TENKYU
TRU!