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ABSTRACT

Differential inclusions arising in population biclogy are analysed and a numerical ap-
proach to solve the corresponding initial value problems is proposed. These differential
inclusions originate from optimal myopic strategies and from projecting differential equa-
tions onto a viability set. We show that such differential inclusions may piecewise be
considered either as ordinary differential equations or as differential-algebraic equations
with Index 2. The numerical method is based on this observation. Simulations for one
population of predators feeding on two populations of prey and for a system of two
competing populations whose growth is constrained by a limited resource are given.

Keywords: Differential inclusions, population dynamics, control systems, numerical
methods.

1. Introduction

Two new approaches to construct models of interacting populations were recently
proposed, see (4] and {10]. Both of them lead in the last analysis to differential inclu-
sions rather than to differential equations. In [4] complex food webs are modelled as
control systems, where the controls may have various meanings, for example, they
may model selective feeding for predators or selective escape for prey, etc. Since it
is well known that predators exhibit feeding preferences, some internal strategies
were considered. Optimel myopic solutions were defined to be the solutions of the
control system that are driven by a particular strategy that is locally optimal. This
approach was used to model cyclic behavior of the star-fish Acanthaster planci on
Great Barrier Reef (1]. It was shown that feeding preferences of this star-fish may
cause cyclic oscillations in its density.

Since biological systems must satisfy certain constraints, which may be given by
the environment, it is natural to include these constraints into the description of the
gystem. These constraints define the so called viability set. The only biologically
plausible solutions are those that belong to the viability set at every instant of
time. The viability theory solves the problem of the existence of viable solutions,
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see [2] and {3]. In (11] a method for correcting the dynamics at those points where
no viable solution of the original system exists was developed. It consists in the
“projection” of the dynamics onto the contingent cone to the viability set. This
process typically leads to differential inclusions.

Difficulties arise if one wants to perform simulations of the above-mentioned
problems. Since we are dealing with differential inclusions, the standard numerical
procedures like Fuler method or Runge-Kutta method may not give satisfactory
results, compare [12]. For example, using an explicit Runge-Kutta method often
leads to rapid oscillations. Therefore, more advanced numerical methods should be
used. In case of optimal myopic strategies the approach given in [14] is applicable
which is suited for the numerical treatment of differential inclusions arising from
differential equations with discontinuous right-hand side of a special structure. In
case when the solution is unique the methods analyzed in [8] and [9] can be applied.

In this paper we model simple dynamical systems including optimal myopic
strategies and/or viability constraints. Under certain conditions and using the
special structure of our problems we will show that the resulting differential inclusion
can be restated piecewise either as an ordinary differential equation (ODE) or as
a differential-algebraic equation (DAE) with Index 2. This observation allows to
use suitable methods (depending on the structure of the right-hand side) for ODEs
and DAEs to successively compute the solution on subintervals where the structure
remains constant. This is a first step for treating biologically interesting examples
numerically with methods of high precision.

2. Food Preferences and Viability Constraints

In [4] an approach for modelling food preferences and other possible strategies was
developed. It was shown that “local” or “myopic” optimality may be described by
the following control system

2'(t) = a(x(t)) + B(z(t))u(t)  for almost all ¢ € [0,T],
u(t) € S(z(t)) for all ¢ € [0,T], (2.1)
z(t) € K for all t € [0,T)

where € R™ is the vector of populations densities, a : R* - R*, B : R® —
Mat(n,l), (Mat(n,l) denotes the set of all n x | matrices) are continuous maps.
The set-valued map § is called the strategy map and associates to any z the set of
possible controls from a given set 2/ which locally maximize a given cost function.
Thus for S the following form is assumed

S(z) = {u eU|d(z,u) = Exea.&cd(sc,v)} {2.2)
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where U C R’, and

i
U=SueR Y uj=1,1420j=1,...,1

j=1

Let us note that it is also possible to consider the case when the map § is given by
several functions d*. The nonempty closed set K denotes the viabslity set which is
given by p constraints, i.e.

K={zeR"|r(z) <0,...,7p(z) £ 0}. (2.3)
For x € K we define the set of active constraints
Ma):={i=1,...,p|rz) =0} .

In population biclogy a “natural” viability set K is the positive orthant but more
complicated sets may easily be considered. Such sets may be given for example by
constraints on the size of the “space” in which populations live. If we set

F(z) = {a{z) + B(z)u | v € S(z)}, (2.4)
(2.1) becomes a constrained differential inclusion

z'(t) € F(z(t)),

) €K, (2.5)

There may exist no viable solution of {2.5), i.e. a solution which stays in K. Viability
theory (see [2], {3]) gives necessary and sufficient conditions under which a viable
solution exists. Besides some technical assumptions it is necessary that the feedback
map

R(z) = F(z) N Tx(x) {2.6)

has nonempty values in K. Here Tk (z) stands for the Bouligand contingent cone,
see [3]. In other words, the above tangential condition means that for each point
on the boundary of the set K there exists at least one control u € S(x) for which
a(z) + B{z)u is “tangential” to the set K. In the case R(z) = @ for some z ¢ K
there is no viable solution starting from z. In order to achieve viability for the
system the right-hand side of the differential inclusion must be changed at least at
those points where R{x) = @. This can be done by projecting the right-hand side
of the differential inclusion (2.5) onto the contingent cone to the set K. Such an
approach which leads to a “projected differential inclusion” was used in [10]. In
[11] it was shown that under some appropriate conditions the projected differential
inclusion has the same sclutions as the following inclusion

z'(t) € F(xz(t)) — C+(G(z(
18 g KE—’B( )) — C4+(G(x(2))) (2.7)
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where G : K ~ R™ is a given set-valued map and C;(G(z)) denotes the positive
cone spanned by G(z). The meaning of the set G(z) is to give directions along which
the dynamics F(z) can be projected, see Example 1 below for a reasonable choice
of the map . To give a numerical algorithm to solve the initial value problem
corresponding to (2.7) we assume that the set-valued map G(.) is given through m
single valued maps ¢; : R® = R, 1 =1,...,m. For every z € K we define

G(z) = conv{gi(z) | i € I'(z)}, (2.8)

where conv denotes the convex hull. Moreover, we will assume that the cost function
d ig linear in controls, i. e.

d(z,u) = d* (z)ur + - + d' (z)u,.
Forie {1,...,1} we define
R:={z € R"|d'(z) > d(x) forevery j#i, j€ {1,...,1}}.

Then for every z € R, i € {1,...,1} the strategy map S(z) is single valued and we
denote its unique value by u* = (uf,...,u}) € U. Furthermore, we get

7

g 1=
“ 10 otherwise.

Define

*z) = {1,' e{1,... 0} |di(z) = J_EI{I}?J} dj(a:)} .

Let us note that for © € R*, I?(z) is single valued. Vectors {v,...,v}, v; € R™ are
called geomnetrically independent if {vy —wy, ..., va_y —wy } are linearly independent.
We will agsume that if I%(z) contains at least two elements then
{Vd'(z) |i € I*(z)} are geometrically independent . (2.9)
In this case the set R™ \ U:’:l R has zero Lebesgue measure in R™ and
Pry={ie{1,...,1} | z € A(R")}.
Since the set S(z) is a polyhedral set with extremal points v, i € I%(z) we get

S(z)={uER‘|“= Z it Z mi =1, MiZO,i€12($)}-

iel(z) i€ (z)
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Hence, the differential inclusion (2.7) can equivalently be written as

2(1) = ale(t) + Ble®) Y, wmltui®) -k 3 M) gdl=(t) ,

e (1)) i€ (z(t)}
1= D pdt), ()20, ieP(),
eI (z(t))
k(t) > 0, (2.10)
1= > N AB20, iel'@),
i€ (z(t)}

ri(z(t)) <0, 1<i<p.

Let us note that the existence theorem for (2.10) can be obtained from [11].

A solution z : [0,T] — R™ of the initial value problem corresponding to (2.10)
is called piecewise active if the index sets I'(z(t)) and I%(z(t)) are changing only
at a finite number of points , € [0,T], ! =1,...,k. We will assume that z(-)
is piecewise active and consider an interval [r;,7141] on which I'(z(t)) = I' and
P(z(t)) = I? hold for t € [r, 7141). Furthermore, we choose a fixed ig € I?. With
help of ig we can eliminate iy = 1 — 3,12 ;u pi from the system (2.10). If
I? contains only one element we have p;; = 1. We define »; := kA;. Note that
k=3 ;envi, A; = vj/k. Hence, we can recompute k, A; from v; if k # 0. The
case k = 0 is of no practical importance because it means that no projection is
necessary. Now, for every index i € I%, i # 4g

4 (a(t)) - d(x(2)) = 0

has to be satisfied because of the definition of the strategy map. Then on [, T141] we
have to solve the following initial value problem for a differential-algebraic equation

Y{) =a@®)+ Y m®)By)(w() - v ()

1E72,iip
+B(y(®)u(t) — Y vi(t)g; () ,
jelt
0=d(y(t)) - d°(y(t)), iel’ i#io, (2.11)
0= Tj(y(t))a JE€ I '

y(n) = x(n) .

We refer to [6] and [13] for the treatment of differential algebraic equations (defini-
tion of index, existence and uniqueness of a solution, numerical treatment, etc.). In
addition to the differential algebraic equation, the following inequalities have to be
satisfied

0< mt) <1, i€l i#iy, wi)20 eI

to ensure that the solution of the differential algebraic equation is a solution of the
control problem we started with. Hence, we have additional conditions imposed on
variables (of Index 2, cf. [6] )} u; and v;.
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When solving (2.11) by a step-by-step numerical method one of the two index
sets I' or I? may change between two steps. This change is necessary when one of
the following compatibility conditions is violated

(a) di(y(t)) — d(y(t)) <0, €I i#4g,

(b) 7 (y(t)) <0, jgIt,
(C)Oﬁﬂa(t)ﬂh iEIzai#iOa
{d) v;(¢) > 0, jen

at a certain discretization point. These conditions have to be checked afier each
computational step to ensure that the structure of {2.11) is chosen compatible to
our original problem (2.5).

To achieve a higher order of convergence for a numerical method applied to the
initial value problems corresponding to (2.5) it is essential to locate the points where
a structural change occurs with high precision. In general, we have to combine an
ODE/DAE-solver with modules for:

(i) Detecting a structural change (failure of compatibility conditions).
(ii) Locating the point where the structural change occurred.
(iii) Determining a new compatible structure.

After finishing steps (i)-(iii) we have to restart the ODE/DAE-solver at the
localized point with the corresponding initial values and the new compatible struc-
ture.

Especially (iii) needs some further analysis. If one of the compatibility conditions
is no longer valid we have to change the index sets. In case that (a) or (b) fails
for some indices, we add these indices to the corresponding index set, and if (c)
fails for some indices we remove those indices from 1. If (d) is no longer true
for some indices, these indices have to be removed from I'. With the new index
sets we compute the solution of the resulting ODE/DAE and test the compatibility
conditions once more. In case (a) incompatibility of the newly determined structure
may occur. In this case it is necessary to exchange iy and to remove some of the
added indices from the index set 12,

3. Simulations

As underlying numerical method for solving the arising initial value problems for
the ODE'’s and DAE’s with Index 2 we used the code RADAUS, see [6] and [7]. The
points where the index is changing were localized by a bracketing method.

Example 1. [Two populations depending on one resource.] Let us consider two
populations whose densities are denoted by x,, x2, which are constrained by “space”
5. It is assumed that the growth of these two populations is described by a logistic
equation, i.e.
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z'1(t) = z1(t) (a1 — byz1 ()},
z'a(t) = zo(t)(az — byza (1)) ,
x1(t) + za2(t) < S(2) .

Choosing G(x) := (z,, ;) gives the following form of (2.10)

2'1(t) = z1(t)(a1 — b1 (8)) — k() ()
2'2(t) = 332( Naa — byza(t)) — k(t)za(t)
k(t) >
z1(t) + z2(t) S(t)
For z1(t) + z2(t) = S(t} the projected system has the form

x1{ay ~ byzy) + 2a{ay — baxy) — &

:ﬂ; =:1’,‘1(a1—b1$1— < )1
—_ —_ o i
2 = z3(ag — byzs — z1{e1 — hiz1) + ﬂgz(az byzy) - S ).

The solution of the initial value problem with initial values
z1(0) = 0.5, =,(0) =0.3,
parameters
a2 = 1.0, iy = 0.5, bl = 1.0, bg = 0.3,

and resource limiting function
S(t) = exp(0.2(50.0 — t)) + 1

is plotted in Fig. 1. First, the system is not limited by the available space and
reaches its equilibrium given by (a1/b1,a2/b2). At a certain time ¢; when S(¢;) =
a1/b1 + az /by, the constraint becomes active, the dynamics changes and the system
reaches a new “environmentally induced” equilibrium.

Example 2. [Optimal myopic strategy.] In [4] a simple system of one population
of predators feeding on two populations of prey was considered. The dynamics was
described by Lotka—Volterra-like equations, with no self-saturation and competition
between two populations of prey. Here we consider the same system, but we include
self-saturation and competition for prey populations, i.e.

2'1(8) = cn 21 (t) — Braza(t)* — Brezy (t)x2(t) — k121 (B)@s(t)ui(t) ,
z'a(t) = cazalt) — Baazr (£)T2(t) — Baoza(t)® — kawa(t)zs(t)usz(t)
z'3(t) = zp(t)za(t)ua (t) + zo(t)zs(thua(t) — vaxa(t),

with u1(2), ua(t} > 0, ui(t) + ug(t) = 1 and z,(¢), z2(t) the densities of the prey
and z3(t) the density of the predator at the time {. We assume, that the control of
feeding is chosen such that

d(m, u) =au 21 +bugzy = ul(a,:cl - bIz) + bxy
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Fig. 1. Solution of Example 1.

is maximized at every instant of time. For ¢ = b = 1 this can be interpreted as
maximizing the relative growth rate, the case considered in [4].
Depending on the sign of g(x) ;= az; — bxe we have to distinguish three cases

=1 forz € Gt := {x € R?| ¢(z) < 0},
u, € [0,1] for xz € G* := {x € R? | g(z) = 0},
u =0 forz € G~ := {z € R? | g(z) < 0}.

The existence of a solution for the initial value problem for the resulting differential
inclusion follows from [4]. For the above system it can also be proved that the
solution is unique. Let us denote

fi (@) = (n(z), f(z, 1)), f7(2):= (n(z), f(2,0)),

where n(z) = (a,—b,0) denotes the normal to G° oriented from G~ to G*. For
z € (G fixed we may distinguish two casges

fFay<o, frfxy=o.

In case f;}(x) > 0 we use f, (z) = f(z) +ari1z173 + brazaz3 to verify that in this
case fo'(z) > 0 holds. Hence for every z € R% either f(z) < 0 or f; (z) > 0 holds
and we can apply Theorem 2, p. 111 in [5] to get uniqueness of the solution to the
corresponding initial value problem. Uniqueness is important for the convergence
of the proposed numerical method.
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Fig. 2. Solution of Example 2 {511 = 0.2).

Fig. 3. Solution of Example 2 (3;; = 0.01),
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For the numerical tests we used

a; =012, az = 0.4, k1 =031, Ko = 0.37, T3 = 0.5a = 1.0, b=20.
The remaining parameters are chosen as S12 = fz; = 0.05 and Bz = By

where 3y, serves as a bifurcation parameter. Figures 2 and 3 show the asymptotic
behaviour of a particular solution starting from the initial densities

21(0) = 0.1, 2,(0) = 0.5, x3(0) = 2.0.

It can be seen that when the parameter #1; decreases under certain value, a cycle
arises. This resembles Hopf bifurcation, but the mechanism behind it is different,
since we are dealing with differential inclusion rather than with differential equation.
Starting with different initial values indicates that the limit “cycle” is asymptotically
stable.
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